The Generalized Verschiebung Map for Curves of Genus 2

نویسنده

  • BRIAN OSSERMAN
چکیده

Let C be a smooth curve, and Mr(C) the coarse moduli space of vector bundles of rank r and trivial determinant on C. We examine the generalized Verschiebung map Vr : Mr(C) 99K Mr(C) induced by pulling back under Frobenius. Our main result is a computation of the degree of V2 for a general C of genus 2, in characteristic p > 2. We also give several general background results on the Verschiebung in an appendix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius-unstable Vector Bundles and the Generalized Verschiebung

Let C be a smooth curve, and Mr(C) the coarse moduli space of vector bundles of rank r and trivial determinant on C. We discuss the generalized Verschiebung map Vr : Mr(C) 99K Mr(C) induced by pulling back under Frobenius. We begin with a survey of general background results on the Verschiebung, as well as certain more specialized work in fixed genus, characteristic, and rank. We then discuss t...

متن کامل

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves

This article presents a novel optimal pairing over supersingular genus-2 binary hyperelliptic curves. Starting from Vercauteren’s work on optimal pairings, we describe how to exploit the action of the 2-th power Verschiebung in order to further reduce the loop length of Miller’s algorithm compared to the genus-2 ηT approach. As a proof of concept, we detail an optimized software implementation ...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

The Hodge-Arakelov Theory of Elliptic Curves in Positive Characteristic

The purpose of this paper is to study the Hodge-Arakelov theory of elliptic curves (cf. [Mzk1-4]) in positive characteristic. The first two §’s (§1,2) are devoted to studying the relationship of the Frobenius and Verschiebung morphisms of an elliptic curve in positive characteristic to the Hodge-Arakelov theory of elliptic curves. We begin by deriving a “Verschiebung-Theoretic Analogue of the H...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006